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ABSTRACT
Reinforced concrete shear walls are an integral part of
. the lateral force resisting systems in multi-story build-
ings. The behavior of reinforced concrete shear walls is
explored with nonlinear finite element software developed by
Dr. K.J. Bathe of the Massachusetts Institute of Technology:
Automatic Dynamic Incremental Nonlinear Analysis (ADINA).
The purpose and scope of this thesis addresses practical
considerations 1in the nonlinear analysis of reinforced
concrete shear wall buildings.

Reinforced concrete behavior has various complexities
that inhibit nonlinear analysis. Among these include:
Concrete cracking in tension zones; Plastic behavior of
steel reinforcing; Three dimensional behavior of concrete;
Bond slip. These challenges prevent the engineer from
realistically modeling the nonlinear behavior of reinforced
concrete. Thus far, current design methodology relies on
elastic finite element methods to design reinforced concrete
structures. Elastic plate elements are used for shear
walls, and beam-column elements are used for moment frame
structures. The scope of this thesis addresses the shear
wall buildings. Plate elements with a linear modules of
elasticity accept tension and compression equally without
distinguishing for cracked zones. Stress distributions in
tension areas may be equal to those in compression zones.
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For reinforced concrete structures, this is clearly not the
case. There are limited finite element software packages
available for addressing the concrete cracking problem on a
large multistory building. Additionally, the contribution
of steel is paramount in a reinforced concrete structure.
No conventional provisions currently exist for including the
reinforcing steel into a finite element model. Con-
sequently, the structural design profession relies the
linear finite element approach and compensates for these
assumptions by introducing factors of safety to reduce the
risk of failure. While this has demonstrated to be a suc-
cessful tactic, further research to predict the ultimate
failure capacity of a building is necessary.

The purpose of this dissertation is to introduce a
useful practical methodology for addressing the nonlinear
response of multistory reinforced concrete shear wall
buildings. The prospect of applying these nonlinear analy-
sis techniques on a broad scale to other reinforced concrete
structures is possible, and encouraged. In light of this
objective, the nonlinear finite element program is applied.
The first portion of this thesis develops and examines a
nonlinear methodology to predict behavior of individual
shear wall specimens tested at the University of California,
Berkeley. A reasonable correlation is observed for two test

specimens. These tests consisted of increasing monotonic
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shear loads. Upon completing these verification tests, a
fourteen story reinforced concrete building with seismic
monitoring devices is analyzed for nonlinear capacity. The
structure consists of six shear walls ( four in the north-
south direction, and two in the east-west direction). Each
shear wall is modeled and analyzed for ultimate lateral
capacity. Results are tabulated and compared with con-
ventional design codes (i.e., Portland Cement Association,
American Concrete Institute, and the Uniform Building Code).
A dynamic analysis is performed using time history
input from the San Fernando (1971) and Northridge (1994)
Earthquakes. Response Spectrum analyses are compared with
recorded data with reasonable correlation. A second model
using elastic finite elements is used to cross-check the
results from nonlinear model. This program is the Extended
Three Dimensional Building Analysis (ETABS) software, de-
veloped by University of California, Berkeley. Time history
responses are compared between the elastic, inelastic, and
recorded data. The inelastic model demonstrates itself a
useful tool for practical nonlinear application on large

building projects.
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CHAPTER 1
INTRODUCTION
1.1 sl Wall Buildi

Shear wall buildings comprise a large proportion of
commercially constructed buildings. These structures serve
as residential and office space occupancy, and range up to
thirty stories and beyond. Shear wall buildings may be
classified into two broad categories:

1. Shear/Flexural Wall Lateral Resisting Buildings.

2. Bearing Wall Buildings.

The major difference between the two is their lateral
resisting design. A shear/flexural wall building (Category
1) relies on a primary vertical load carrying system, such
as columns & beams while the shear walls function primarily
for lateral resistance. The specific intent of the shear
and flexural walls is to provide lateral stiffness. Ver-
tical loads are carried by the beam-column system.

As an example, refer to Figure 1-1 which shows a
combination concrete ductile moment frame with a shear
walls. The shear walls brace the concrete moment frame
against lateral deflections while the frame handles the
vertical loads. This structural system is commonly utilized

in multistory office structures.
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CONCRESTE DUCTILE MOMENT FRAMB LATERAL BRACING TO MRAME
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Figure 1-1. Category 1: Ductile Moment Frame, Shear Wall
Floor Plan
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Figure 1-2. Bearing Wall Structure Floor Plan
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Category 2 comprises a shear wall system that func-
tions both as a vertical load carrying system and also a
lateral resisting system. Vertical loads are transferred
to walls and eventually to the foundation. Therefore, the
axial force/stress increases on the wall toward the base of
the building. In addition to this axial force, the wall is
also expected to resist large dynamic loads (due to earth-
quake or wind) that strike "in-plane" and "out-of-plane” to
the wall.

Refer to Figure 1-2, shows a bearing wall floor plan.
Both the exterior and interior walls absorb vertical and
lateral loads. The primary load carrying system are the
walls, and there is no secondary load system.

By experience, shear wall buildings have deffionstrated
an excellent performance during earthquakes. They are
stiff structures with high ductility. Generally, shear
wall buildings survive earthquakes with minimal damage.
This is due to a particular characteristic of shear wall
structures which is their stiff in-plane resistance. The
in-plane shear resistance provides bracing against dynamic
loads and shortens the period of the structure.

To further clarify the difference between in-plane vs.
out-of-plane resistance: Refer to Figure 1-3(a) which

shows a shear wall loaded "in-plane". In-plane load
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Figure 1-3(a). In-Plane Shear Capacity

Figure 1-3(b). Out of Plane Flexural Capacity
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resistance is the principle strength of shear walls. Pro-
viding lateral bracing (against cut-of-plane buckling)
allows shear walls to accept very high in-plane loads. Out-
of-plane forces are depicted in Figure 1-3 (b). Shear
walls require bracing against out-of-plane loads by either
additional shear walls or ductile moment frames. If the
out-of-plane bracing is not provided, the shear wall will
fail prematurely. From a practical standpoint, shear walls
are usually braced in their perpendicular direction by
additional walls to alleviate potential failure. With
exception of retaining walls, in a building with a shear
wall design, the out-of-plane forces are counteracted by
either another wall or dual bracing systeﬁ.

"Shear wall"™ is the industry accepted term. However,
not all shear walls behave in a shear capacity, as shown in
Figure 1-4. Tall slender walls are required to resist
flexural stresses at the base. Flexural walls are referred
to as "Structural Walls" by some researchers and prac-
titioners, as opposed to "Shear Walls" that are shorter and
longer. The difference is the in-plane capacity being
linked to a flexural or shear deformation failure. For
simplicity, in this thesis the term “shear walls” will be

used throughout.
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In Figure 1-4(a) and (b), the deflected shape of a struc-
tural wall and a shear wall are shown. Since a structural
wall absorbs significant bending stresses, its deflected
shape may be calculated with flexural bending theory (in
the elastic range) and ignoring shear deformation contribu-
tions. For a pure shear wall, it is necessary to account
for shear deformation contributions. Therefore, the fail-
ure mode of these two types of walls are quite different.
To analyze linear and nonlinear behavior requires a model
that can allow for contribution of shear deformation dis-
placement along with flexural displacement. Both are nec-
essary to properly describe the wall behavior.

In order to develop flexural and shear strength, two
significant components of a shear wall are necesSary:

1. Web reinforcing: Web steel consists of horizontal
and vertical reinforcing at uniform spacing.
2. Boundary reinforcing: Vertical steel with ties

located at both ends of the shear wall.

Figure 1-5(a), (b), and (c) show three different types
of shear walls.

Boundary reinforcing develops large axial tension/
compression forces that create an in-plane force-couple
system to resist external moments. Boundary steel with

horizontal ties (similar to column ties) contributes to
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confinement of the concrete. Concrete confinement in-
creases the material stress-strain curve to an enhanced
capacity (i.e., the concrete is stronger and has greater
ductility).

External moments also result in web shear that cause
diagonal tension cracks. Web steel is responsible to
resist in-plane shear stresses. Diagonal tension stress is
a concept familiar from basic concrete courses. The “com-
pression strut theory” identifies concrete as the principle
vector to resist compression stresses, while steel provides
tension resistance. Nevertheless, shear walls seldom fail
due to high compression stress, but rather will crack in
tension areas due to insufficient web steel.

Figure 1-5(a) is a typical uniform thickness shear
wall. Confinement at the boundary elements are provided,
and thus increases flexural capacity. Web steel provides
in-plane shear resistance. Cross-seétions of this type are
commonly used in shear wall buildings of shorter height
(i.e., less than five stories) because they provide good
shear resistance and ductility, but do not have high flex~
ural capacity under axial loads as the walls of Figure 1-5
(b) and (c). Additionally, web buckling is a consider-

ation in slender sections.
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Figure 1-5(b) is a typical “framed shear wall” be-
cause the boundary elements are column/pilaster thickness
and “frame” the web area. Framed shear walls are particu-
larly strong in developing moment-capacity because of the
high axial forces in the boundary elements. These types of
shear walls are used for tall multistory applications where
vertical load capacity and lateral resistance are both
necessary.

Figure 1-5(c) is a t-shaped shear wall. The perpen-
dicular (flange) wall increases the web’s in-plane moment
of inertia. Although the flange is out-of-plane to the
web, structural engineers have observed the performance of
t~-shaped shear walls to demonstrate strong bending resis-
tance. Flanged shear walls do not enhance sheaf'bapacity
as much as the moment, because the flange does not increase
the gross area as it does the moment of inertia. There-
fore, t-shaped shear walls have their best application in
tall multistory buildings which require both vertical and
lateral load capacity.

1.2 st iall Buildi Desi . iq .

There are many examples of shear wall buildings. From
an engineering standpoint, there are many reasons for
specifying shear wall resisting systems. From an architec-

tural point of view, a problem arises with placing the
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shear walls in a strategic location to avoid impacting the
view and/or floor plan arrangement of the design. Eco-
nomical design of shear wall buildings so that the maximum
structural efficiency is achieved is of tremendous value to
all parties involved. Architectural considerations for the
placement of shear walls revolve around efficient use of
floor space to satisfy client requirements. A shear wall
building requires permanent walls that cannot be moved for
future tenant preferences. This is because the wall pro-
vides structural resistance and is tied to the floor and
ceiling diaphragms. Consequently, for office buildings and
retail space, ductile moment frame structures are selected
because of the added flexibility provided to the architect
designer. Floor plans may be readjusted to accérmmodate
tenant requirements without compromising structural
resistance.
1,3 C led Wall Buildi

The connecting beams are sized to be lower stiffness
(i.e., weaker) than the shear walls. During wind/earth-
quake loads, the coupling beams will form plastic hinges at
their joints with the shear walls. This allows for a duc-
tile response to lateral loads by not allowing the shear
walls to deform plastically. Rather, the inelastic damage

is confined to the joints of the coupling beams. A
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